242 research outputs found

    Methodology for benthic foraminifera analysis: biocoenosis and thanatocoenosis

    Get PDF

    Foraminifera in transitional environments

    Get PDF
    Date du colloque : 08/2012International audienc

    Benthic foraminiferal responses to anthropogenic manipulation on a wild oyster reef

    Get PDF
    Benthic foraminifera are known to respond quickly to environmental changes. Biological indices are used in marine subtidal areas (Barras et al., 2014) to monitor impacted marine environments (Mojtahid et al., 2006, 2008). Such indices could be useful in transitional marine environments such as estuaries and mudflats where no accurate indices are available. To develop such to ols and to improve our knowledge on b enthic foraminifera in intertidal environments, we followed the spatial and temporal distribution of b enthic foraminifera in Bourgneuf Bay, a coastal bay with a large mudflat situated south of the Loire estuary on French west coast. At this location, wild oyster reefs are present. Partial release of organic and inorganic nutrients through oyster excretion enriches the nutrients flow leading to microphytobenthos bloom around the reef. To show this relation and to understand the relation between the different biological compartments,we analysed the foraminiferal composition of the sediment around the reef before and after ananthrop ogenic manipulation. In July 2014, the oysters of the reef were removed in order to assess their impact on microphytob enthos and meiofauna. In this study, we showed a strong impact of this anthrop ogenic manipulation on benthic foraminiferal densities and species composition. These results confirmed the strong and quick responses of benthic foraminifera from intertidal areas to environmental changes and showed that intertidal benthic foraminifera can be used as an index to monitor transitional marine environments

    Ecological and Biological Response of Benthic Foraminifera Under Oxygen-Depleted Conditions: Evidence from Laboratory Approaches

    Get PDF
    Laboratory experiments are a valuable way to elucidate physiological and ecological processes of benthic foraminifera under oxygen-depleted conditions. Experimentally tested survival rates and other experiments show high tolerance of many species under low oxic to anoxic conditions. Laboratory observations raised different assumptions to explain the physiological adaptations to this tolerance. Denitrification processes seem to be one important mechanism. Nevertheless, foraminifera try to colonize sediment horizons with optimal species-specific oxygen concentrations. Experimental settings demonstrated the importance of oxygen gradients for the orientation in sediments. At the same time, foraminifera change the oxygen concentration in their microenvironment by respiration. Despite high bioturbation, they do not appear to influence the flux of oxygen into the sediment. Experimental working in oxygen-depleted environments needs a reliable determination of living foraminifera during the experiment, e.g., different biochemical techniques. Additionally, electrochemical or optical oxygen sensors that measure the oxygen concentration are necessary

    Locomotion speed of the benthic foraminifer Ammonia tepida exposed to different nitrogen and carbon sources

    Get PDF
    Ammonia tepida is a dominant benthic foraminifer colonizing intertidal mudflat sediments. Horizontal locomotion speeds were monitored using time-lapse image analysis over 6 and 24 h. Experimental conditions were based on foraminifera exposed to dry sediment re-suspended in artificial sea water (ASW) without any nutrient addition (condition DS), to combusted sediment re-suspended in in ASW also without any nutrient addition (condition CS), or to combusted sediment re-suspended in ASW enriched with either: nitrate, urea, glucose, soil extract (SE), extracellular polymeric substances (EPS), benthic diatoms (Entomoneis paludosa) or natural microphytobenthic assemblages (MPB). Significant differences were already measured after 6 h between A. tepida mean locomotion speeds at the different experimental conditions. However, differences were clearer after 24 h where the slowest A. tepida mean locomotion speed was measured in specimens placed in CS (1.00 ± 0.30 mm h− 1) and the highest mean locomotion speed in DS (2.99 ± 0.22 mm h− 1). Three different groups were defined according to their locomotion speed, (1) foraminifera exposed to DS had a locomotion speed significantly higher than all other conditions, (2) foraminifera placed in conditions enriched in SE, Glucose, Urea and EPS had intermediary locomotion speeds (1.8–2.5 mm h− 1), and (3) conditions with foraminifera showing the lowest locomotion speeds (1–1.6 mm h− 1) were CS, nitrate, MPB and E. paludosa. Thus, foraminifera exposed to organic matter (DS, SE, Glucose and Urea) showed faster locomotion speeds than foraminifera exposed to inorganic matter (CS, nitrate) or live preys (E. paludosa, MPB). Dissolved organic matter enrichment enhanced foraminifera locomotion speed, which might be a behavioural response to satisfy their carbon and/or nitrogen requirements, and the lowest locomotion speed observed when feeding on live preys might be a consequence of longer time required for live prey phagocytosis

    Surviving anoxia in marine sediments: The metabolic response of ubiquitous benthic foraminifera (Ammonia tepida)

    Get PDF
    High input of organic carbon and/or slowly renewing bottom waters frequently create periods with low dissolved oxygen concentrations on continental shelves and in coastal areas; such events can have strong impacts on benthic ecosystems. Among the meiofauna living in these environments, benthic foraminifera are often the most tolerant to low oxygen levels. Indeed, some species are able to survive complete anoxia for weeks to months. One known mechanism for this, observed in several species, is denitrification. For other species, a state of highly reduced metabolism, essentially a state of dormancy, has been proposed but never demonstrated. Here, we combined a 4 weeks feeding experiment, using 13C-enriched diatom biofilm, with correlated TEM and NanoSIMS imaging, plus bulk analysis of concentration and stable carbon isotopic composition of total organic matter and individual fatty acids, to study metabolic differences in the intertidal species Ammonia tepida exposed to oxic and anoxic conditions. Strongly contrasting cellular-level dynamics of ingestion and transfer of the ingested biofilm components were observed between the two conditions. Under oxic conditions, within a few days, intact diatoms were ingested, degraded, and their components assimilated, in part for biosynthesis of different cellular components: 13C-labeled lipid droplets formed after a few days and were subsequently lost (partially) through respiration. In contrast, in anoxia, fewer diatoms were initially ingested and these were not assimilated or metabolized further, but remained visible within the foraminiferal cytoplasm even after 4 weeks. Under oxic conditions, compound specific 13C analyses showed substantial de novo synthesis by the foraminifera of specific polyunsaturated fatty acids (PUFAs), such as 20:4(n-6). Very limited PUFA synthesis was observed under anoxia. Together, our results show that anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia tepida on a time scale of less than 24 hours, these observations are consistent with a state of dormancy

    Effect of grain orientation on the development of dislocation substructures during cold-deformation of pure Tantalum. Link with static recrystallization and recovery.

    Get PDF
    International audienceRecrystallization and recovery of pure polycrystalline tantalum are highly influenced by the intragranular dislocation structure developed during plastic deformation. A tantalum oligocrystal has been deformed by compression at room temperature. The resulting intragranular dislocation structures have been characterized using a FEG scanning electron microscope coupled with an EBSD system. Based on these experimental observations and crystal plasticity simulations, the development of dislocation substructures is related to the crystallographic stability of grain orientations

    Mesures des hétérogénéités de déformation du tantale déformé à froid et conséquences sur la recristallisation

    Get PDF
    National audienceLa recristallisation statique du tantale est fortement dépendante de la microstructure engendrée lors de la mise en forme. Des échantillons présentant de faibles taux de déformation ont été obtenus par des essais mécaniques simples de torsion et de compression. Leur observation par microscopie électronique à balayage ainsi que la réalisation de cartographies d'orientation par EBSD, associées à des traitements thermiques in situ, ont permis de montrer qu'un grain avec un facteur de Taylor élevé recristallisait plus vite. Par ailleurs, une méthode « globale » d'évaluation de la densité de dislocations à partir de mesures de dureté a été mise en place. Elle permet d'estimer l'énergie stockée par le matériau lors de sa déformation, énergie qui peut ensuite être reliée au déclenchement de la recristallisation. Cette approche est particulièrement intéressante pour des échantillons déformés sévèrement suivant un chemin de déformation complexe, pour lesquels le calcul des facteurs de Taylor à partir d'une microstructure déformée revêt moins de sens
    corecore